Monolithic Peak Detector with Reset-and-Hold Mode

FEATURES

Monolithic Design for Reliability and Low Cost
High Slew Rate: $0.5 \mathrm{~V} / \mu \mathrm{s}$
Low Droop Rate
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}: 0.1 \mathrm{mV} / \mathrm{ms}$
$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}: 10 \mathrm{mV} / \mathrm{ms}$
Low Zero-Scale Error: $\mathbf{4 m V}$
Digitally Selected Hold and Reset Modes
Reset to Positive or Negative Voltage Levels
Logic Signals TTL and CMOS Compatible
Uncommitted Comparator On-Chip
Available in Die Form

GENERAL DESCRIPTION

The PKD01 tracks an analog input signal until a maximum amplitude is reached. The maximum value is then retained as a peak voltage on a hold capacitor. Being a monolithic circuit, the PKD01 offers significant performance and package density advantages over hybrid modules and discrete designs without sacrificing system versatility. The matching characteristics attained in a monolithic circuit provide inherent advantages when charge injection and droop rate error reduction are primary goals.
Innovative design techniques maximize the advantages of monolithic technology. Transconductance (g_{m}) amplifiers were chosen over conventional voltage amplifier circuit building blocks. The g_{m} amplifiers simplify internal frequency compensation, minimize acquisition time and maximize circuit accuracy. Their outputs are easily switched by low glitch current steering circuits. The steered outputs are clamped to reduce charge injection errors upon entering the hold mode or exiting the reset mode. The inherently low zero-scale error is further reduced by active Zener-Zap trimming to optimize overall accuracy.

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

RST	$\overline{\text { DET }}$	OPERATIONAL MODE
0	0	PEAK DETECT
0	1	PEAK HOLD
1	1	RESET
1	0	INDETERMINATE

SWITCHES SHOWN FOR: RST $=" 0, " \frac{}{\text { DET }}=" 0 "$

The output buffer amplifier features an FET input stage to reduce droop rate error during lengthy peak hold periods. A bias current cancellation circuit minimizes droop error at high ambient temperatures.
Through the $\overline{\mathrm{DET}}$ control pin, new peaks may either be detected or ignored. Detected peaks are presented as positive output levels. Positive or negative peaks may be detected without additional active circuits, since Amplifier A can operate as an inverting or noninverting gain stage.
An uncommitted comparator provides many application options. Status indication and logic shaping/shifting are typical examples.

PKDO1-SPECIFICATIONS

Parameter	Symbol	Conditions	PKD01A/E			PKD01F			Unit
			Min	Typ	Max	Min	Typ	Max	
g_{m} AMPLIFIERS A, B									
Zero-Scale Error	$\mathrm{V}_{\text {ZS }}$			2	4		3	7	mV
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			2	3		3	6	mV
Input Bias Current	I_{B}			80	150		80	250	nA
Input Offset Current	$\mathrm{I}_{\text {OS }}$			20	40		20	75	nA
Voltage Gain	A_{V}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	18	25		10	25		V/mV
Open-Loop Bandwidth	BW	$\mathrm{A}_{\mathrm{V}}=1$		0.4			0.4		MHz
Common-Mode Rejection Ratio	CMRR	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	80	90		74	90		dB
Power Supply Rejection Ratio	PSRR	$\pm 9 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	86	96			96		dB
Input Voltage Range ${ }^{1}$	V_{CM}		± 10	± 11		± 10	± 11		V
Slew Rate	SR			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
Feedthrough Error ${ }^{1}$		$\Delta \mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{DET}=1, \mathrm{RST}=0$	66	80		66	80		dB
Acquisition Time to 0.1% Accuracy 1	t_{AQ}	20 V Step, $\mathrm{A}_{\mathrm{VCL}}=+1$		41	70		41	70	$\mu \mathrm{s}$
Acquisition Time to 0.01% Accuracy ${ }^{1}$	t_{AQ}	20 V Step, $\mathrm{A}_{\mathrm{VCL}}=+1$		45			45		$\mu \mathrm{s}$
COMPARATOR									
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			0.5	1.5		1	3	mV
Input Bias Current	I_{B}			700	1000		700	1000	nA
Input Offset Current	$\mathrm{I}_{\text {OS }}$			75	300		75	300	nA
Voltage Gain	A_{V}	$2 \mathrm{k} \Omega$ Pull-Up Resistor to 5 V	5	7.5		3.5	7.5		V / mV
Common-Mode Rejection Ratio	CMRR	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	82	106		82	106		dB
Power Supply Rejection Ratio	PSRR	$\pm 9 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	76	90		76	90		dB
Input Voltage Range ${ }^{1}$	V_{CM}		± 11.5	± 12.5		± 11.5	± 12.5		V
Low Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\text {SINK }} \leq 5 \mathrm{~mA}$, Logic GND $=0 \mathrm{~V}$	-0.2	+0.15	+0.4	-0.2	+0.15	+0.4	V
"OFF" Output Leakage Current	I_{L}	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		25	80		25	80	$\mu \mathrm{A}$
Output Short-Circuit Current	$\mathrm{I}_{\text {SC }}$	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	7	12	45	7	12	45	mA
Response Time ${ }^{2}$	ts_{5}	5 mV Overdrive, $2 \mathrm{k} \Omega$ Pull-Up Resistor to 5 V		150			150		ns
Logic "1" Input Voltage	V_{H}		2			2			V
Logic "0" Input Voltage	V_{L}				0.8			0.8	V
Logic "1" Input Current	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{H}}=3.5 \mathrm{~V}$		0.02	1		0.02	1	$\mu \mathrm{A}$
Logic "0" Input Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{L}}=0.4 \mathrm{~V}$		1.6	10		1.6	10	$\mu \mathrm{A}$
MISCELLANEOUS									
Droop Rate ${ }^{3}$	V_{DR}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.01	0.07		0.01	0.1	$\mathrm{mV} / \mathrm{ms}$
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	0.15		0.03	0.20	$\mathrm{mV} / \mathrm{ms}$
Output Voltage Swing: Amplifier C	V_{OP}	$\overline{\mathrm{DET}}=1$							
		$\mathrm{R}_{\mathrm{L}}=2.5 \mathrm{k} \Omega$	± 11.5	± 12.5		± 11	± 12		V
Short-Circuit Current:									
Switch Aperture Time	t_{AP}			75			75		ns
Switch Switching Time	ts			50			50		
Slew Rate: Amplifier C	SR	$\mathrm{R}_{\mathrm{L}}=2.5 \mathrm{k} \Omega$		2.5			2.5		$\mathrm{V} / \mu \mathrm{s}$
Power Supply Current	$\mathrm{I}_{\text {SY }}$	No Load		5	7		6	9	mA

NOTES

${ }^{1}$ Guaranteed by design.
${ }^{2} \overline{\mathrm{DET}}=1, \mathrm{RST}=0$.
${ }^{3}$ Due to limited production test times, the droop current corresponds to junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$. The droop current vs. time (after power-on) curve clarified this point. Since most devices (in use) are on for more than 1 second, ADI specifies droop rate for ambient temperature (T_{A}) also. The warmed-up (T_{A}) droop current specification is correlated to the junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ value. ADI has a droop current cancellation circuit that minimizes droop current at high temperature. Ambient $\left(\mathrm{T}_{\mathrm{A}}\right)$ temperature specifications are not subject to production testing.
Specifications subject to change without notice.

PKDO1
EIFCTRICAL CHARACTERISTICS ${ }^{\left(@ V_{S}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { for PKD01AY, }-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \text { for }\right) ~}$ ELECTRICAL CHARACTERISTICS PKD01EY, PKD01FY and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for PKDO1EP, PKDO1FP, unless otherwise noted.)

Parameter	Symbol	Conditions	PKD01A/E			PKD01F			Unit			
			Min	Typ	Max	Min	Typ	Max				
" gm_{m} " AMPLIFIERS A, B												
Zero-Scale Error	V_{ZS}			4	7		6	12	mV			
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$				6		5	10	mV			
Average Input Offset Drift ${ }^{1}$	$\mathrm{TCV}_{\text {OS }}$			-9	-24		-9	-24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$			
Input Bias Current				160	250		160	500				
Input Offset Current	$\mathrm{I}_{\text {OS }}$			30	100		30	150	nA			
Voltage Gain	A_{V}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	7.5	9		5	9		V / mV			
Common-Mode Rejection Ratio	CMRR	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$		82		72	80		dB			
Power Supply Rejection Ratio	PSRR	$\pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$		90		70	90		dB			
Input Voltage Range ${ }^{1}$	$\mathrm{V}_{\text {CM }}$		± 10	± 11		± 10	± 11		V			
Slew Rate	SR			0.4			0.4		V/ $\mu \mathrm{s}$			
Acquisition Time to 0.1% Accuracy ${ }^{1}$	t_{AQ}	20 V Step, $\mathrm{A}_{\mathrm{VCL}}=+1$		60			60		$\mu \mathrm{s}$			
COMPARATOR												
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			2	2.5		2	5	mV			
Average Input Offset Drift ${ }^{1}$	$\mathrm{TCV}_{\text {OS }}$			-4	-6		-4	-6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$			
Input Bias Current	I_{B}			1000	2000		1100	2000				
Input Offset Current	$\mathrm{I}_{\text {OS }}$			100	600		100	600	nA			
Voltage Gain	A_{V}	$2 \mathrm{k} \Omega$ Pull-Up Resistor to 5 V	4	6.5		2.5	6.5		V / mV			
Common-Mode Rejection Ratio	CMRR	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	80	100		80	92		dB			
Power Supply Rejection Ratio	PSRR	$\pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	72	82		72	86		dB			
Input Voltage Range ${ }^{1}$	V_{CM}		± 11			± 11			V			
Low Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\text {SINK }} \leq 5 \mathrm{~mA}$, Logic GND $=0 \mathrm{~V}$	-0.2	+0.15	+0.4	-0.2	+0.15	+0.4	V			
OFF Output Leakage Current	I_{L}	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		25	100		100	180	$\mu \mathrm{A}$			
Output Short-Circuit Current	$\mathrm{I}_{\text {SC }}$			10	45	6	10	45	mA			
Response Time	$\mathrm{t}_{\text {S }}$	5 mV Overdrive, $2 \mathrm{k} \Omega$ Pull-Up Resistor to 5 V		200			200		ns			
$\overline{\text { DIGITAL INPUTS - RST, } \overline{\mathrm{DET}}^{2}}$												
Logic "1" Input Voltage	V_{H}		2			2			V			
Logic "0" Input Voltage	$\mathrm{V}_{\text {L }}$				0.8			0.8	V			
Logic "1" Input Current	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{H}}=3.5 \mathrm{~V}$		0.02	1		0.02	1	$\mu \mathrm{A}$			
Logic "0" Input Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{L}}=0.4 \mathrm{~V}$		2.5	15		2.5	15	$\mu \mathrm{A}$			
MISCELLANEOUS												
Droop Rate ${ }^{3}$	V_{DR}	$\mathrm{T}_{\mathrm{J}}=$ Max Operating Temp.		1.2	10		3	15	$\mathrm{mV} / \mathrm{ms}$			
		$\mathrm{T}_{\mathrm{A}}=$ Max Operating Temp. $\overline{\mathrm{DET}}=1$		2.4	20		6	20	$\mathrm{mV} / \mathrm{ms}$			
Output Voltage Swing V $\mathrm{R}_{\mathrm{L}}=2.5 \mathrm{k} \Omega$ $\pm 11+12$ $\pm 10.5+12$ V												
Short-Circuit Current												
Switch Aperture Time	t_{AP}			75			75	40	ns			
Slew Rate: Amplifier C	SR	$\mathrm{R}_{\mathrm{L}}=2.5 \mathrm{k} \Omega$		2			2		$\mathrm{V} / \mathrm{\mu s}$			
Power Supply Current	$\mathrm{I}_{\text {SY }}$	No Load		5.5	8		6.5	10	mA			

NOTES

${ }^{1}$ Guaranteed by design.
${ }^{2} \overline{\mathrm{DET}}=1, \mathrm{RST}=0$.
${ }^{3}$ Due to limited production test times, the droop current corresponds to junction temperature (T_{J}). The droop current vs. time (after power-on) curve clarifies this point. Since most devices (in use) are on for more than 1 second, ADI specifies droop rate for ambient temperature (T_{A}) also. The warmed-up (T_{A}) droop current specification is correlated to the junction temperature $\left(T_{J}\right)$ value. ADI has a droop current cancellation circuit that minimizes droop current at high temperature. Ambient $\left(\mathrm{T}_{\mathrm{A}}\right)$ temperature specifications are not subject to production testing.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$	
Supply Voltage . $\pm 18 \mathrm{~V}$	
Input Voltage	Equal to Supply Voltage
Logic and Logic Ground	
Voltage	Equal to Supply Voltage
Output Short-Circuit Duration	Indefinite
Amplifier A or B Differential Input Volta	- age $\pm 24 \mathrm{~V}$
Comparator Differential Input Voltage	$\pm 24 \mathrm{~V}$
Comparator Output Voltage	

. Equal to Positive Supply Voltage
Hold Capacitor Short-Circuit Duration Indefinite
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$
Storage Temperature Range
PKD01AY, PKD01EY, PKD01FY $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PKD01EP, PKD01FP $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range
PKD01AY . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
PKD01EY, PKD01FY $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
PKD01EP, PKD01FP $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Junction Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\boldsymbol{*}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Unit
14-Lead Hermetic DIP (Y)	99	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{*} \theta_{\mathrm{JA}}$ is specified for worst-case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip and PDIP packages.

ORDERING GUIDE ${ }^{1}$

Model 2	Temperature Range	Package Description	Package Option
PKD01AY	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip	Q-14
PKD01EY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip	Q-14
PKD01FY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip	Q-14
PKD01EP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-14$
PKD01FP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Plastic DIP	N-14

NOTES
${ }^{1}$ Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic DIP, and TO-can packages.
${ }^{2}$ For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

PIN CONFIGURATION

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the PKD01 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

DICE CHARACTERISTICS

1. RST (RESET CONTROL)	9. INVERTING INPUT (B)
2. V+	10. COMPARATOR NONINVERTING INPUT
3. OUTPUT	11. COMPARATRR INVERTING INPUT
4. CH (HOLD CAPACITOR)	12. COMPARAATOR OUTPUT
5. INVERTING INPUT (A)	13. LOGIC GROUND
6. NONINVERTING INPUT (A)	14. DET (PEAK DETECT CONTROL)
7. V-	A, B (A) NULL
8. NONINVERTING INPUT (B)	C, D (B) NULL
DIE SIZE $0.090 \times 0.100 ~ I N C H, ~ 9000 ~ S Q . ~ M I L S ~$	
($2.286 \times 2.54 m m, 5.8$ SQ. mm$)$	
FOR ADDITIONAL DICE INFORMATION REFER TO	
1986 DATA BOOK, SECTION 2.	

WAFER TEST LIMITS (@ $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	PKD01N Limit	Unit
" g_{m} " AMPLIFIERS A, B Zero-Scale Error Input Offset Voltage Input Bias Current Input Offset Current Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Input Voltage Range ${ }^{1}$ Feedthrough Error	V_{ZS} V_{OS} I_{B} I_{OS} A_{V} CMRR PSRR V_{CM}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V} \\ & \pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{~V}, \overline{\mathrm{DET}}=1, \mathrm{RST}=0 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \\ & 250 \\ & 75 \\ & 10 \\ & 74 \\ & 76 \\ & \pm 11.5 \\ & 66 \end{aligned}$	$m V \max$ mV max nA max nA max $\mathrm{V} / \mathrm{mV} \min$ dB min dB min V min dB min
COMPARATOR Input Offset Voltage Input Bias Current Input Offset Current Voltage Gain ${ }^{1}$ Common-Mode Rejection Ratio Power Supply Rejection Ratio Input Voltage Range ${ }^{1}$ Low Output Voltage "OFF" Output Leakage Current Output Short-Circuit Current	V_{OS} I_{B} I_{OS} A_{V} CMRR PSRR V_{CM} V_{OL} I_{L} I_{SC}	$\begin{aligned} & 2 \mathrm{k} \Omega \text { Pull-Up Resistor to } 5 \mathrm{~V} \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V} \\ & \pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V} \\ & \mathrm{I}_{\text {SINK }} \leq 5 \mathrm{~mA} \text {, Logic GND }=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 1000 \\ & 300 \\ & 3.5 \\ & 82 \\ & 76 \\ & \pm 11.5 \\ & 0.4 \\ & -0.2 \\ & 80 \\ & 45 \\ & 7 \end{aligned}$	mV max nA max nA max V / mV min dB min dB min V min V max V min $\mu \mathrm{A}$ max mA min mA min
DIGITAL INPUTS-RST, $\overline{\mathrm{DET}}^{2}$ Logic " 1 " Input Voltage Logic "0" Input Voltage Logic " 1 " Input Current Logic "0" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \\ & \mathrm{I}_{\mathrm{INH}} \\ & \mathrm{I}_{\mathrm{INL}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 0.8 \\ & 1 \\ & 10 \end{aligned}$	V min V max $\mu \mathrm{A}$ max $\mu \mathrm{A} \max$
MISCELLANEOUS Droop Rate ${ }^{3}$ Output Voltage Swing Amplifier C Short-Circuit Current Amplifier C Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DR}} \\ & \mathrm{~V}_{\mathrm{OP}} \\ & \mathrm{I}_{\mathrm{SC}} \\ & \mathrm{I}_{\mathrm{SY}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2.5 \mathrm{k} \Omega \end{aligned}$ No Load	$\begin{aligned} & 0.1 \\ & 0.20 \\ & \pm 11 \\ & 40 \\ & 7 \\ & 9 \end{aligned}$	$\mathrm{mV} / \mathrm{ms}$ max $\mathrm{mV} / \mathrm{ms}$ max V min mA max mA min mA max
g_{m} AMPLIFIERS A, B Slew Rate Acquisition Time ${ }^{1}$	$\begin{aligned} & \mathrm{SR} \\ & \mathrm{t}_{\mathrm{A}} \\ & \mathrm{t}_{\mathrm{A}} \end{aligned}$	0.1% Accuracy, 20 V Step, $\mathrm{A}_{\mathrm{VCL}}=1$ 0.01% Accuracy, 20 V Step, $\mathrm{A}_{\mathrm{VCL}}=1$	$\begin{aligned} & 0.5 \\ & 41 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
COMPARATOR Response Time		5 mV Overdrive, $2 \mathrm{k} \Omega$ Pull-Up Resistor to 5 V	150	ns
MISCELLANEOUS Switch Aperture Time Switching Time Buffer Slew Rate	$\begin{aligned} & \mathrm{t}_{\mathrm{AP}} \\ & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{SR} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2.5 \mathrm{k} \Omega$	$\begin{aligned} & 75 \\ & 50 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \mathrm{V} / \mu \mathrm{s} \end{aligned}$

NOTES

${ }^{1}$ Guaranteed by design.
${ }^{2} \overline{\mathrm{DET}}=1, \mathrm{RST}=0$.
${ }^{3}$ Due to limited production test times, the droop current corresponds to junction temperature (T_{J}). The droop current vs. time (after power-on) curve clarifies this point. Since most devices (in use) are on for more than 1 second, ADI specifies droop rate for ambient temperature (T_{A}) also. The warmed-up (T_{A}) droop current specification is correlated to the junction temperature $\left(T_{J}\right)$ value. ADI has a droop current cancellation circuit that minimizes droop current at high temperature. Ambient $\left(\mathrm{T}_{\mathrm{A}}\right)$ temperature specifications are not subject to production testing.

PKD01-Typical Performance Characteristics

TPC 1. A and B Input Range vs. Supply Voltage

TPC 4. Input Spot Noise vs. Frequency

TPC 7. Amplifier A Charge Injection Error vs. Input Voltage and Temperature

TPC 2. A and B Amplifiers Offset Voltage vs. Temperature

TPC 5. Wideband Noise vs. Bandwidth

TPC 8. Output Voltage Swing vs. Supply Voltage (Dual Supply Operation)

TPC 3. $A, B I_{\text {Os }}$ vs. Temperature

TPC 6. Amplifier B Charge Injection Error vs. Input Voltage and Temperature

TPC 9. Output Voltage vs. Load Resistance

TPC 10. Output Error vs.
Frequency and Input Voltage

TPC 13. Large-Signal Inverting Response

TPC 16. Settling Time for +10 V to O V Step Input

TPC 12. Settling Response

TPC 11. Settling Response

TPC 14. Large-Signal Noninverting Response

TPC 17. Small-Signal Open-Loop Gain/Phase vs. Frequency

TPC 15. Settling Time for -10 V to o V Step Input

TPC 18. Channel-to-Channel Isolation vs. Frequency

PKDO1

TPC 19. Off Isolation vs. Frequency

TPC 22. Acquisition Time vs. Input Voltage Step Size

TPC 20. Droop Rate vs. Time after Power On

TPC 21. Acquisition Time vs. External Hold Capacitor and Acquisition Step

TPC 24. Acquisition of Step Input

TPC 25. Acquisition of Sine Wave Peak

TPC 23. Droop Rate vs. Temperature

TPC 26. Comparator Output Response Time (2 k Ω Pull-Up Resistor, $T_{A}=25^{\circ} \mathrm{C}$)

TPC 27. Comparator Output Response Time (2 k Ω Pull-Up Resistor, $T_{A}=25^{\circ} \mathrm{C}$)

TPC 28. Input Logic Range vs. Supply Voltage

TPC 31. Supply Current vs. Supply Voltage

TPC 34. Comparator Offset Voltage vs. Temperature

TPC 29. Input Range of Logic Ground vs. Supply Voltage

TPC 32. Hold Mode Power Supply Rejection vs. Frequency

TPC 35. Comparator los vs. Temperature

TPC 30. Logic Input Current vs. Logic Input Voltage

TPC 33. Comparator Input Bias Current vs. Differential Input Voltage

TPC 36. Comparator I_{B} vs. Temperature

PKDO1

TPC 37. Output Swing of Comparator vs. Supply Voltage

TPC 40. Comparator Output Voltage vs. Output Current and Temperature

TPC 38. Comparator Response Time vs. Temperature

TPC 41. Comparator Response Time vs. Temperature

TPC 39. Comparator Transfer Characteristic

THEORY OF OPERATION

The typical peak detector uses voltage amplifiers and a diode or an emitter follower to charge the hold capacitor, C_{H}, indirectionally (see Figure 1). The output impedance of A plus D_{1} 's dynamic impedance, r_{d}, make up the resistance which determines the feedback loop pole. The dynamic impedance is $r_{d}=\frac{k T}{q I_{d}}$, where I_{d} is the capacitor charging current.

The pole moves toward the origin of the S plane as I_{d} goes to zero. The pole movement in itself will not significantly lengthen the acquisition time since the pole is enclosed in the system feedback loop.

Figure 1. Conventional Voltage Amplifier Peak Detector
When the moving pole is considered with the typical frequency compensation of voltage amplifiers however, there is a loop stability problem. The necessary compensation can increase the required acquisition time. ADI's approach replaces the input voltage amplifier with a transconductance amplifier (see Figure 2).
The PKD01 transfer function can be reduced to:

$$
\frac{V_{O U T}}{V_{I N}}=\frac{1}{1+\frac{s C_{H}}{g_{m}}+\frac{1}{g_{m} R_{O U T}}} \approx \frac{1}{1+\frac{s C_{H}}{g_{m}}}
$$

where: $g_{m} \approx 1 \mu \mathrm{~A} / \mathrm{mV}, R_{\text {OUT }} \approx 20 \mathrm{M} \Omega$.
The diode in series with A's output (see Figure 2) has no effect because it is a resistance in series with a current source. In addition to simplifying the system compensation, the input transconductance amplifier output current is switched by current steering. The steered output is clamped to reduce and match any charge injection.

Figure 2. Transconductance Amplifier Peak Detector
Figure 3 shows a simplified schematic of the reset g_{m} amplifier, B. In the track mode, Q_{1} and Q_{4} are $O N$ and Q_{2} and Q_{3} are OFF. A current of $2 I$ passes through D_{1}, I is summed at B and passes through Q_{1}, and is summed with $g_{m} V_{I N}$. The current sink can absorb only 3 I , thus the current passing through D_{2} can
only be: $2 \mathrm{~K}-g_{\mathrm{m}} \mathrm{V}_{\text {IN }}$. The net current into the hold capacitor node then, is $\mathrm{g}_{\mathrm{m}} \mathrm{V}_{\mathrm{IN}}\left[\mathrm{I}_{\mathrm{H}}=2 \mathrm{I}-\left(2 \mathrm{I}-\mathrm{g}_{\mathrm{m}} \mathrm{V}_{\mathrm{IN}}\right)\right]$. In the hold mode, Q_{2} and Q_{3} are ON while Q_{1} and Q_{4} are OFF. The net current into the top of D_{1} is $-I$ until D_{3} turns ON. With $Q_{1} O F F$, the bottom of D_{2} is pulled up with a current I until D_{4} turns $O N$, thus, D_{1} and D_{2} are reverse biased by $<0.6 \mathrm{~V}$, and charge injection is independent of input level.
The monolithic layout results in points A and B having equal nodal capacitance. In addition, matched diodes D_{1} and D_{2} have equal diffusion capacitance. When the transconductance amplifier outputs are switched open, points A and B are ramped equally, but in opposite phase. Diode clamps D_{3} and D_{4} cause the swings to have equal amplitudes. The net charge injection (voltage change) at node C is therefore zero.

Figure 3. Transconductance Amplifier with Low Glitch Current Switch
The peak transconductance amplifier, A is shown in Figure 4. Unidirectional hold capacitor charging requires diode D_{1} to be connected in series with the output. Upon entering the peak hold mode D_{1} is reverse-biased. The voltage clamp limits charge injection to approximately 1 pC and the hold step to 0.6 mV .
Minimizing acquisition time dictates a small C_{H} capacitance. A 1000 pF value was selected. Droop rate was also minimized by providing the output buffer with an FET input stage. A current cancellation circuit further reduces droop current and minimizes the gate current's tendency to double for every 10° temperature change.

Figure 4. Peak Detecting Transconductance Amplifier with Switched Output

PKDO1

APPLICATIONS INFORMATION

Optional Offset Voltage Adjustment

Offset voltage is the primary zero scale error component since a variable voltage clamp limits voltage excursions at D_{1} 's anode and reduces charge injection. The PKD01 circuit gain and operational mode (positive or negative peak detection) determine the applicable null circuit. Figures 5 through 8 are suggested circuits. Each circuit also corrects amplifier C offset voltage error.

Figure 5. Vos Null Circuit for Unity Gain Positive Peak Detector

2. DISCONNECT R_{C} FROM C_{H} AFTER AMPLIFIER A ADJUSTMENT.
3. REPEAT NULL CIRCUIT FOR RESET BUFFER AMPLIFIER B IF REQUIRED.

Figure 6. Vos Null Circuit for Differential Peak Detector
A. Nulling Gated Output $\boldsymbol{g}_{\boldsymbol{m}}$ Amplifier A. Diode D_{1} must be conducting to close the feedback circuit during amplifier A V_{OS} adjustment. Resistor network $\mathrm{R}_{\mathrm{A}}-\mathrm{R}_{\mathrm{C}}$ cause D_{1} to conduct slightly. With DET $=0$ and $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, monitor the PKD01 output. Adjust the null potentiometer until $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$. After adjustment, disconnect R_{C} from C_{H}.
B. Nulling Gated \boldsymbol{g}_{m} Amplifier B. Set Amplifier B signal input to $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ and monitor the PKD01 output. Set DET = $1, \mathrm{RST}=1$ and adjust the null potentiometer for $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. The circuit gain-inverting or noninverting-will determine which null circuit illustrated in Figures 5 through 8 is applicable.

Figure 7. Vos Null Circuit for Negative Peak Detector

Figure 8. Vos Null Circuit for Positive Peak Detector with Gain

PEAK HOLD CAPACITOR RECOMMENDATIONS

The hold capacitor $\left(\mathrm{C}_{\mathrm{H}}\right)$ serves as the peak memory element and compensating capacitor. Stable operation requires a minimum value of 1000 pF . Larger capacitors may be used to lower droop rate errors, but acquisition time will increase.
Zero scale error is internally trimmed for $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}$. Other C_{H} values will cause a zero scale shift which can be approximated with the following equation.

$$
\Delta V_{Z S}(m V)=\frac{1 \times 10^{3}(p C)}{C_{H}(n F)}-0.6 m V
$$

The peak hold capacitor should have very high insulation resistance and low dielectric absorption. For temperatures below $85^{\circ} \mathrm{C}$, a polystyrene capacitor is recommended, while a Teflon capacitor is recommended for high temperature environments.

CAPACITOR GUARDING AND GROUND LAYOUT

Ground planes are recommended to minimize ground path resistance. Separate analog and digital grounds should be used. The two ground systems are tied together only at the common system ground. This avoids digital currents returning to the system ground through the analog ground path.

Figure 9. C_{H} Terminal (Pin 4) Guarding. See Text. The C_{H} terminal (Pin 4) is a high impedance point. To minimize gain errors and maintain the PKD01's inherently low droop rate, guarding Pin 4 as shown in Figure 9 is recommended.

COMPARATOR

The comparator output high level $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is set by external resistors. It is possible to optimize noise immunity while interfacing to all standard logic families-TTL, DTL, and CMOS. Figure 10 shows the comparator output with external level-setting resistors. Table I gives typical R1 and R2 values for common circuit conditions.
The maximum comparator high output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ should be limited to:

$$
V_{O H}(\text { maximum })<V+-2.0 V
$$

With the comparator in the low state $\left(\mathrm{V}_{\mathrm{OL}}\right)$, the output stage will be required to sink a current approximately equal to $\mathrm{V}_{\mathrm{C}} / \mathrm{R} 1$.

Figure 10. Comparator Output with External Level-Setting Resistors

Table I.

$\mathbf{V}_{\mathbf{C}}$	$\mathbf{V}_{\mathbf{O H}}$	$\mathbf{R 1}$	$\mathbf{R 2}$
5	3.5	$2.7 \mathrm{k} \Omega$	$6.2 \mathrm{k} \Omega$
5	5.0	$2.7 \mathrm{k} \Omega$	∞
15	3.5	$4.7 \mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega$
15	5.0	$4.7 \mathrm{k} \Omega$	$2.4 \mathrm{k} \Omega$
15	7.5	$7.5 \mathrm{k} \Omega$	$7.5 \mathrm{k} \Omega$
15	10.0	$7.5 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega$

$$
R 1 \approx \frac{V_{C}}{I_{S I N K}}
$$

$$
R 2 \approx\left(\frac{1}{\frac{V_{C}}{V_{O H}}-1}\right)
$$

PEAK DETECTOR LOGIC CONTROL (RST, $\overline{\text { DET }}$)
The transconductance amplifier outputs are controlled by the digital logic signals RST and $\overline{\mathrm{DET}}$. The PKD01 operational mode is selected by steering the current $\left(\mathrm{I}_{1}\right)$ through Q_{1} and Q_{2}, thus providing high-speed switching and a predictable logic threshold. The logic threshold voltage is 1.4 V when digital ground is at zero volts.
Other threshold voltages (V_{TH}) may be selected by applying the formula:

$$
V_{T H} \approx 1.4 V+\text { Digital Ground Potential. }
$$

For proper operation, digital ground must always be at least 3.5 V below the positive supply and 2.5 V above the negative supply. The RST or $\overline{\mathrm{DET}}$ signal must always be at least 2.8 V above the negative supply.
Operating the digital ground at other than zero volts does influence the comparator output low voltage. The V_{OL} level is referenced to digital ground and will follow any changes in digital ground potential:

$$
V_{O L} \approx 0.2 V+\text { Digital Ground Potential. }
$$

Figure 11. Logic Control

Figure 12. Burn-In Circuit

Typical Circuit Configurations

Figure 13. Unity Gain Positive Peak Detector

Figure 14. Positive Peak Detector with Gain

Figure 15. Negative Peak Detector with Gain

Figure 16. Unity Gain Negative Peak Detector

IF BOTH INPUT SIGNAL (AMPLIFIER A INPUT) AND THE RESET VOLTAGE (AMPLIFIER B INPUT) HAVE THE SAME POSITIVE VOLTAGE GAIN,THE GAIN CAN BE SET BY A SINGLE VOLTAGE DIVIDER FOR BOTH INPUT AMPLIFIERS.

NOTE:
R1, R2, R3 AND R4 > 5k Ω

Figure 17. Alternate Gain Configuration

Figure 18. Peak-to-Peak Detector

Figure 19. Logic Selectable Positive or Negative Peak Detector

Figure 20. Peak Reading A/D Converter

Figure 21. Positive Peak Detector with Selectable Reset Voltage

Figure 22. Programmable Low Frequency Ramp Generator

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

